CERES CLOUD PRODUCTS

Patrick Minnis, David F. Young

NASA Langley Research Center

Sunny Sun-Mack, Qing Trepte

SAIC

David R. Doelling, Douglas A. Spangenberg

AS&M, Inc.

Patrick W. Heck

CIMSS, Univ. Wisconsin, Madison

http://lposun.larc.nasa.gov/~cwg/

March 29, 2004

CERES Cloud Products

Provide consistent dataset from TRMM, Terra, & Aqua to

- Relate cloud properties to the radiation budget
- Develop new bidirectional reflectance models for interpreting broadband radiance measurements
- Derive surface and atmospheric radiation budgets & the top-of-atmosphere ERB
- Provide data to initialize & validate climate & weather prediction models

BASIC APPROACH

CERES Matched Cloud-Radiation Data

- Determine cloud properties from imager data (2 km)
- Convolve & average imager cloud properties into CERES footprints (10 - 50 km)

METHODOLOGY

- Classify each imager pixel as clear or cloudy
 - determine the confidence of the classification (good, weak, glint, haze)
- Retrieve cloud micro- and macrophysical cloud properties
 - reclassify if no retrievals result (~4% of cloudy pixels)
- Combine imager cloud properties & broadband fluxes from satelliteobserved radiances
 - convolve imager pixel results into CERES sensor footprint
 - select anisotropic correction models
 - compute shortwave & longwave fluxes

DATA

• TRMM VIRS 2-km pixels

Domain: 37°S - 37°N

- 2-30 overpasses per month at all times of daylight (1/98-7/01)

MODIS 1-km pixels (sampled to 2 km)
 Domain: Global

- 2 overpass/day (night-day), more over poles

Input

- 0.65 & 1.6 (2.1) μ m reflectances

- 3.7, 10.8, and 12- μ m brightness temperatures

- GMAO (ECMWF) T(z), q(z), $O_3(z)$ each 6 hr (3-hr skin temps)

- Elevation, water %, ice/snow, IGBP type

Results

- averages on 1.0° grid & individual CERES footprints (~ 10 km)
- some pixel-level output also available

CERES CLOUD PROPERTIES

1 SSF PIXEL w/CERES FLUXES (SSF = Single Scanner Footprint)

AMOUNT F

EFFECTIVE RADIATING TEMP Tc

EFFECTIVE HEIGHT, PRESSURE Zc, pc

TOP PRESSURE p_t

THICKNESS

EMISSIVITY 8

PHASE (0 - 2)

WATER DROPLET EFFECTIVE RADIUS re

OPTICAL DEPTH τ

LIQUID WATER PATH LWP

ICE EFFECTIVE DIAMETER De

ICE WATER PATH IWP

OTHER DERIVED PARAMETERS FROM CLEAR PIXELS

• CLEAR-SKY ALBEDOS (0.6 & 1.6 μ m)

• CLEAR-SKY TEMPERATURES (3.7, 11, & 12 μ m)

SKIN TEMPERATURE

- AEROSOL OPTICAL THICKNESS (ocean only)
 - additional MODIS-team-derived aerosol data included (see Ignatov talk)
- SURFACE EMISSIVITY (3.7, 8.5, 11, & 12 μ m)

CALIBRATION

Extensive ongoing intercalibration effort

- intercalibrate VIRS & MODIS; Terra & Aqua MODIS
- determine stability by comparing imagers to CERES
- examine all channels of interest (0.6, 0.86, 1.6, 3.7-3.9, 10.8, 12 μ m) theoretically account for expected inter-satellite spectral differences
- use statistics to reduce noise and angular/time matching errors

Intercalibrate other satellites for CERES & other projects

- link all considered satellites to references (VIRS or MODIS)
- GOES-7, 8, 9, 10, 11, 12 (1993 present)
- AVHRR: NOAA-9,10, 11, 12, 14, 15, 16, 17 (1985 present)
- GMS-5, Meteosat-7 & SEVIRI on Meteosat-8

USE CERES BROADBAND TO MONITOR TRENDS IN IMAGER CHANNELS

Compute slope for each day

Monitor slope variation

USE STABLE IMAGER AS REFERENCE FOR OTHER IMAGERS

VIRS, ATSR-2, MODIS have onboard cal for all channels

Compute gain each month

Derive trend in gain, repeat with other reference platform

CALIBRATION STATUS FOR CERES VIRS/MODIS

- 2.2%/yr degradation in VIRS 1.6-μm relative to Terra MODIS
- Terra MODIS VIS up to 3% greater at high end, 2% less at low end
 - additional theoretical study needed to warrant changes
 - decreased VIS ocean reflectance model for MODIS
- Spectral differences will introduce some inconsistencies in the VIRS-MODIS results
 - cloud emittance models -> ~ 0.5 K difference
 - surface emissivity maps may need some tweaking
- Trend analyses will continue & include CERES vs MODIS

Aqua MODIS intercalibrations to come

CLOUD MASK

- To detect clouds, the radiances for cloud-free (clear) scene must be known
- Determine clear-sky albedos and surface emissivities after initial processing of data
 - determine means for each surface type to fill in missing areas
- Use ECMWF skin temperatures & profiles to estimate clear-sky brightness temperatures
- Use bidirectional reflectance models to estimate clear-sky reflectance for each pixel
- Estimate thresholds based on uncertainties in models & spatial/temporal variability of the clear radiances

CLEAR-SKY RADIANCE CHARACTERIZATION

- Predict radiance a given satellite sensor would measure for each channel if no clouds are present
- Estimate uncertainty based on spatial & temporal variability
 & angular model errors
- Develop set of spectral thresholds for each channel
 - Solar, uses reflectance, ρ
 - IR, use temperature, T

brightness temperature difference, BTD = $T_{\lambda 1}$ - $T_{\lambda 2}$ typically, BTD(3.7-11) or BTD(11-12)

CLEAR-SKY REFLECTANCE, SOLAR

- Estimate overhead-sun albedo, $\alpha_{\rm o}$ = $\alpha(\mu_{\rm o}$ = 1) derived empirically with initial runs using ISCCP AVHRR DX then updated for each month using VIRS, then Terra MODIS
- Estimate albedo at given local time, $\alpha(\mu_o) = \alpha_o \, \delta_o(\mu_o)$ directional reflectance model $\delta_o(\mu_o)$ derived for each IGBP type using VIRS
- Estimate reflectance for given viewing angles, $\rho(\mu_o, \mu, \phi) = \alpha(\mu_o) \chi(\mu_o, \mu, \phi)$ bidirectional reflectance (BRDF) model χ selected for each IGBP type from Kriebel (1978), Minnis & Harrison (1984), Suttles et al. (1988)
- Add uncertainty to set reflectance threshold, $\rho_T(\mu_o, \mu, \phi) = \rho + \Delta \rho(\mu_o, \mu, \phi)$

MODIS-BASED OVERHEAD-SUN VIS ALBEDO MAP, 12/1/00

PREDICTED CLEAR-SKY VIS ALBEDO 1700 UTC,12/21/00

PREDICTED CLEAR-SKY & OBSERVED VIS REFLECTANCE & CLOUD MASK 1700 UTC,12/21/00

CLEAR-SKY TEMPERATURE, INFRARED

• Estimate surface emissivity, $\varepsilon_s(x,y)$

derived empirically with initial runs using ISCCP AVHRR DX then updated using VIRS, then Terra MODIS; water & snow theoretical

- Estimate radiance leaving the surface, $L_s = \varepsilon_s B(T_{skin}) + (1-\varepsilon_s) L_{ad}$ $L_{ad} = downwelling \ atmo \ radiation, \ T_{skin} = skin \ temperature \ from \ model \ / \ obs$
- Estimate TOA brightness temperature, $B(T_{cs}) = (1-\epsilon_a)L_s + \epsilon_a L_{au}$ $L_{au} = upwelling \ atmo \ radiation, \ \epsilon_a = effective \ emissivity \ of \ atmo$ layer absorption emission computed using T/RH profile, correlated k-dist
- Add uncertainty to set T or BTD thresholds, $T_T(\mu) = T_{cs}(\mu) + \Delta T(\mu)$
 - reflected solar component included in 3.7-4.0 μm estimate

Surface emissivity from *Terra* MODIS, April 2001 $3.7 \mu m$

Unfiltered

Filtered & IGBP filled

Surface emissivity from *Terra* MODIS, April 2001, 11 μ m

Filtered & IGBP filled

Surface emissivity from *Terra* MODIS, April 2001, 8.5 μ m

Filtered & IGBP filled

PREDICTED CLEAR-SKY & OBSERVED IR TEMPERATURE 1700 UTC,12/21/00

PREDICTED CLEAR-SKY & OBSERVED BTD (3.7 - 11) 1700 UTC,12/21/00

CLOUD MASK

Classify each imager pixel as cloud / clear / bad using multiple cascading thresholds + Welch algo

DAYTIME & POLAR: SZA < 82°, 0.6, 1.6, 3.8, 11, 12 μ m

NIGHTTIME & POLAR: 3.8, 11, 12 μ m

STANDARD DAYTIME MASK ALGORITHM

ANCLILLARY DATA USED IN CLOUD MASK & RETRIEVALS

Snow map used as a guide, snow is determined independently if clear

STANDARD NIGHTTIME MASK ALGORITHM

CERES CLOUD MASK & BTD(3.7 - 11) REFLECTANCE 0400 UTC,12/01/00

CLOUD RETRIEVAL METHODOLOGY

• Compute ice & water solution, select most likely based on model fits, temperature, LBTM classification, 1.6-μm reflectance

No retrievals: reclassify as clear or status quo, 3-4%

RETRIEVAL METHODS

DAY: Visible Infrared Solar-Infrared Split-Window Technique (VISST) see Minnis et al. (1995, 1998)

NIGHT: Solar-infrared Infrared Split-Window Technique (SIST)

see Minnis et al. (1995, 1998)

SNOW (DAY): Solar-Infrared Infrared Near-Infrared Technique (SINT)

MODIS only see Platnick (JGR, 2001)

CERES CLOUD PROPERTIES

1 SSF PIXEL w/CERES FLUXES

AMOUNT

EFFECTIVE RADIATING TEMP Tc

EFFECTIVE HEIGHT, PRESSURE Zc, pc

TOP PRESSURE p_t

THICKNESS

EMISSIVITY ε

PHASE (0 - 2)

WATER DROPLET EFFECTIVE RADIUS re

OPTICAL DEPTH au

LIQUID WATER PATH LWP

ICE EFFECTIVE DIAMETER De

ICE WATER PATH IWP

CLOUD HEIGHT ESTIMATION

- Cloud radiating temperature, Tcld
 - optically thin, corrected for semi-transparency
 - optically thick, T11 corrected for atmos attenuation
- Zcld = Z(Tcld)
 - boundary layer uses lapse rate method over ocean & land
 - 700 hPa and lower pressure, use T(z) from GMAO
- Ztop = empirical function of Z(Tcld), phase, Tcld, τ
- Thickness = empirical function of phase, Tcld, τ
- Zbase = Ztop Thickness

LAPSE RATE METHOD

- OCEAN: Use SST as anchor for -7.1 K/ km lapse rate
- LAND: Use 24-hr running mean for anchor
- Blend at 500 hPa

Example: ARM SGP

CERES CLOUD MACROPHYSICAL PROPERTIES 1700 UTC, 12/21/00

CERES CLOUD MICROPHYSICAL PROPERTIES 1700 UTC, 12/21/00

CERES Cloud Microphysical Properties

Eastern China 0002 UTC, **2/03/02**

R: 0.6 um G: 1.6 um B: 11 um

Terra MODIS

CERES Cloud Macrophysical Properties

Eastern China 0002 UTC, **2/03/02**

R: 0.6 um G: 1.6 um B: 11 um

Terra MODIS

Comparison of Optical Depths (OD) from VISST & SINT, Terra MODIS

Northern Alaska

March 3, 2001 2100 UTC

Visible channel overestimates OD over snow & ice

1.6-µm yields more realistic value for OD

CLOUD MASK CLEAR STATISTICS, DECEMBER 2000

Day: csz > 0.1

	Ocean	Land	Desert	Total
CIr Good	0.920	0.759	0.971	0.853
Clr Weak	0.009	0.010	0.015	0.009
CIr Smoke	0.001	0.000	0.000	0.001
Clr Fire	0.000	0.000	0.000	0.000
CIr Snow	0.017	0.228	0.009	0.108
CIr Glint	0.052	0.001	0.000	0.028
CIr Shadow	0.000	0.001	0.005	0.001
CIr Aerosol	0.002	0.000	0.000	0.001
Total	1.000	1.000	1.000	1.000

Night: csz < 0.1

	Ocean	Land	Desert	Total
CIr Good	0.704	0.661	0.717	0.687
Clr Weak	0.076	0.032	0.211	0.062
CIr Snow	0.220	0.307	0.072	0.251
Total	1.000	1.000	1.000	1.000

CLOUD MASK CLOUD STATISTICS, DECEMBER 2000

Day: csz > 0.1

	Ocean	Land	Desert	Total
Cld Good	0.940	0.855	0.662	0.912
Cld Weak	0.038	0.042	0.088	0.047
Cld Glint	0.009	0.001	0.000	0.007
Cld N/R	0.030	0.068	0.250	0.042
Total	1.000	1.000	1.000	1.000

Night: csz < 0.1

	Ocean	Land	Desert	Total
Cld Good	0.909	0.906	0.909	0.908
Cld Weak	0.084	0.084	0.038	0.084
Cld N/R	0.007	0.009	0.053	0.014
Total	1.000	1.000	1.000	1.000

MEAN CLOUD COVER, MODIS, June 2001 Day

2000 **MEAN EFFECTIVE CLOUD HEIGHT, TERRA MODIS** DEC, DAY 2002 km Terra

MEAN WATER CLOUD OPTICAL DEPTH, MODIS, DEC 2002, DAY

Aqua

EFFECTIVE CLOUD TEMPERATURE, MODIS, DEC 2000

MEAN EFFECTIVE CLOUD HEIGHT, MODIS, DEC 2000 NIGHT

MEAN EFFECTIVE ICE CRYSTAL DIAMETER, MODIS, DEC 2000 DAYTIME

MEAN CLOUD PRESSURE, AQUA MODIS DEC 2002

Daytime

hPa

SEASONAL VARIATION OF EFFECTIVE DROPLET RADIUS

VIRS, 1998 - 2001

Range in southern ocean is $2 - 4 \mu m$ Range over tropical land $1 - 2 \mu m$ 1 - 2 µm elsewhere

SEASONAL VARIATION OF EFFECTIVE ICE CRYSTAL DIAMETER

VIRS, 1998 - 2001

VALIDATION (COMPARISONS)

- with climatological datasets (surface, ISCCP)
 - cloud amount, optical depth
- with surface-based retrievals
 - LWP, r_e, Z_c, T_c, τ from radiometers, radar, lidar
- with aircraft measurements
 - in situ microphysics
 - remotely sensed macrophysics, radiation
- with other satellite measurements
 - different type of retrievals (e.g., LWP from μ -wave)
 - dual angle retrievals (phase function, phase, τ)
 - intersatellite consistency
- with theoretical calculations (consistency)
 - TOA fluxes (e.g., SARB results from Charlock)
 - angular variations (e.g., ADMs from Loeb)

COMPARISON OF TOTAL CLOUD AMOUNTS

SURFACE (1971-1996) VIRS (1998) ISCCP (1984 - 1991)

MEAN CLOUD FRACTION, DEC

ISCCP: lower resolution => more cloud cover?

CLOUD AMOUNT AT SOUTH POLE

MONTHLY MEAN CLOUD LWP FROM VIRS & TMI OVER OCEANS

overcast, water cloud only, Tc > 273 K, SZA < 78°, no sunglint

TMI - TRMM Microwave Imager, LWP from method of *Lin et al., JGR, 1998*

Validation of Cloud Height over ARM SGP, Terra 2000-01 $\tau > 5$

Daytime thin: Ci too low; night best agreement

Dong et al. (submitted JAS 2004)

Validation of Thin (τ < 5) Cloud Height over ARM SGP, MODIS 2001

Nearly all thin cloud heights are within boundaries of cloud:

Clouds higher at night due to greater errors in skin temperature

Boundary-layer cloud heights sometimes too high due to inversions

Implies cirrus optical depths are quite reasonable

Validation of CERES Cloud Optical Depth (Stratus)

ARM SGP, VIRS 1998; MODIS 2000-2001

Excellent correspondence between CERES and surface-derived optical depths over ARM SGP site

Validation of CERES Cloud Droplet Size (Stratus) ARM SGP, VIRS 1998; MODIS 2000-2001

CERES average droplet sizes within ± 1 µm of surface-based values over ARM SGP site

Validation of CERES LWP (Stratus) ARM SGP, VIRS 1998; MODIS 2000-2001

CERES LWP within 20% of surface-based values over ARM SGP site

LWP from \(\mu\)-wave not very accurate at small LWP

snow cases not identified yet

COMPARISON WITH SURFACE RADAR RETRIEVALS OF THIN CIRRUS

Over ARM SGP Central Facility, (see *Mace et al. 2004*)

COMPARISON OF CERES MODIS & SFC-DERIVED CLOUD PROPERTIES ARM SGP 2000-2001 DAYTIME

Parameter	MODIS-sfc	std dev	<u>SD(%)</u>	<u>N</u>
Thin Tc vs mean	7.0 K	6.4 K -	18	
Thick Tc vs mean	-5.0 K	10.5 K	-	41
Thin Zc vs. mean	-1.4 km	1.8 km	-	18
Thin Zc vs. top	-2.1 km	1.8 km	-	18
Thick Zc vs. mean	0.2 km	1.1 km	-	41
Thick Zc vs. top	-1.1 km	1.5 km	-	41
Stratus \u03c4	-0.8	6.2	21	25
Stratus re (µm)	-1.1	1.8	20	25
LWP (gm ⁻²)	-29	41	35	25
Cirrus τ	0.2	0.8	40	9
Cirrus De (µm)	6.0?	17.0	72	9
IWP (gm ⁻²)	3.0	16.2	51	9

COMPARISON OF CERES MODIS & SURFACE-DERIVED CLOUD PROPERTIES

ARM SGP 2000-2001 NIGHTTIME

Parameter	MODIS-sfc	std dev	SD(%)	<u>N</u>
Thin Tc vs mean	-1.6 K	9.5 K	-	49
Thick Tc vs mean	-6.9 K	14.5 K	-	31
Thin Zc vs. mean	0.6 km	2.1 km	-	49
Thin Zc vs. top	-0.6 km	2.2 km	-	31
Thick Zc vs. mean	-1.3 km	2.1 km	-	49
Thick Zc vs. top	-0.2 km	1.7 km	-	49

CONSISTENCY WITH RADIATIVE TRANSFER CALCULATIONS

- MEASURE BROADBAND RADIANCE AT ONE ANGLE & CONVERT TO FLUX
- DETERMINE CLOUD PROPERTIES FROM ANOTHER ANGLE & COMPUTE FLUX USING CLOUD PROPERTIES AS INPUT TO RADIATIVE TRANSFER MODEL

(Fu and Liou, 1993)

- DIFFERENCE IS MEASURE OF UNCERTAINTY IN PHASE FUNCTION USED TO RETRIEVE CLOUD PROPERTIES, CLOUD DETECTION, BIDIRECTIONAL REFLECTANCE MODEL, SURFACE & ATMOSPHERIC PROPERTIES
- UNCERTAINTY TELLS US HOW ACCURATE A CLIMATE OR WEATHER MODEL SHOULD COMPUTE THE INSTANTANEOUS FLUX IF THE CLOUD PROPERTIES ARE PROPERLY COMPUTED IN THE MODEL

NIGHTTIME FLUXES IN ARCTIC

COMPARISON OF OBSERVED & COMPUTED SW & LW FLUXES ALL SCENE TYPES, TRMM VIRS/CERES, APRIL 18, 1998

 Δ SW = 5.8 \pm 28 Wm⁻² (14%)

 $\Delta LW = 0.7 \pm 8 \text{ Wm}^{-2} (3\%)$

COMPARISON OF OBSERVED & COMPUTED SW & LW FLUXES ICE CLOUDS ONLY TRMM VIRS/CERES, APRIL 18, 1998

 $\Delta SW = 4.1 \pm 36 \text{ Wm}^{-2} (10\%)$ $\Delta LW = 1.6 \pm 11 \text{ Wm}^{-2} (6\%)$

CERES-DERIVED CLOUD PROPERTIES YIELD EXCELLENT AGREEMENT BETWEEN FLUX OBSERVATIONS & RADIATIVE TRANSFER MODELS

SUMMARY OF ZONAL DIFFERENCES, JUNE 2001

Edition 1a

PARAMETER	MODIS (2 week) - VIRS (1 month)

	<u>ocean</u>	<u>land</u>
Cld amt	-0.028	-0.005
Ice height (km)	0.4	0.3
Water height (km)	0.0	-0.2
Ice tau	2.8	-2.0 (<u>+</u> 5.5)
Water tau	0.1 (<u>+</u> 1.5)	0.4 (<u>+</u> 2.8)
r _e (µm)	-0.7 (<u>+</u> 0.9)	-0.5 (<u>+</u> 0.6)
D _e (μm)	0.9 (<u>+</u> 2.2)	-5.1 (<u>+</u> 2.7)
LWP (gm ⁻²)	2.1	13.7 (SH sampling)
IWP (gm ⁻²)	17, <i>7</i> %	-23, <i>8%</i>

Some Caveats!

- Everything is retrieved: ice over water/ mixed phase -> if overlap, large re (1-2 μ m overestimate) or small De (3-5 μ m under) Zc may be underestimated
- IWP overestimated when water cloud under ice
- Don't use cloud μ -physical properties at night
- Nighttime polar cloud amounts & near-terminator still uncertain
 Look for discontinuities at 60° latitude
- Nighttime ice cloud heights somewhat greater (~ 1.0 km for ice)
- Optical depths, De over snow tres uncertain
- Others, see Data Quality Summary

FUTURE RESEARCH

- multilayer cloud detection & interpretation
 - combined microwave / VISST over ocean
 - secondary processing using info on BTD(11-12), τ , $D_{\rm e}/r_{\rm e}$
 - => improved IWP assessment
- improvement of nighttime/twilight everywhere including poles
 - revise thresholds, include VIS in twilight, include 8.5 μ m
 - improve surface emissivities
- continued validation
 - more continuous assessment at ARM sites
 - CALIPSO cloud height/amt global comparison
 - additional multiangle studies including MSG & GOES
 - in situ icing / microphysics field programs
- subpixel cloud amounts
 - combine hi-res VIS with lo-res multispectral (MODIS)

REFERENCES

List of references and pdfs given on the following web page.

http://www-pm.larc.nasa.gov/ceres/ceres-ref.html

Only imagery and summaries are available for CERES at the Cloud Working Web Page

http://lposun.larc.nasa.gov/~cwg/

Digital data avaiable at the LaRC DAAC

http://eosweb.larc.nasa.gov/HPDOCS/